The edge chromatic number of outer-1-planar graphs
نویسنده
چکیده
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. In this paper, we completely determine the edge chromatic number of outer 1-planar graphs.
منابع مشابه
On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملA Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
متن کاملList Edge and List Total Colorings of Planar Graphs without 6-cycles with Chord
Giving a planar graph G, let χl(G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then χl(G) ≤ ∆(G) + 1 and χ ′′ l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.
متن کاملCircular Chromatic Number of Planar Graphs of Large Odd Girth
It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k + 1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least 4k have circular chromatic number at most 2 + 1 k . Even this restricted version of Jaeger’s conjecture is largely open. The k = 1 case is the well-known Grötzsch 3-colour theorem. This paper ...
متن کاملAcyclic chromatic index of triangle-free 1-planar graphs
An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if it can be drawn on the plane such that every edg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016